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Abstract. As-grown and proton-irradiation damaged crystals of the quasi-one dimensional organic conduc-
tor (fluoranthene)2PF6 are studied by static magnetic field gradient spin echo electron spin resonance. The
parallel-to-stack diffusion constant D‖ varies sample dependent by a factor of 50, just like the ratio D‖/D⊥.
The restriction of free diffusive motion of the conduction electron spins of as-grown and microstructured
crystals is analyzed.

PACS. 76.30.Pk Conduction electrons – 72.15.Lh Relaxation times and mean free paths – 61.72.-y Defects
and impurities in crystals, microstructure – 61.80.Jh Ion radiation effects

1 Introduction

The differentiation between charge and spin motion in
one dimensional conductors is an area of current inter-
est. Whereas treating the charge excitations in such sys-
tems is straight forward, addressing the spin motional de-
grees of freedom is a more subtle affair. Probably the
most ‘natural’ technique for the study of spin-dynamics
is that of Magnetic Resonance. In this context, the unique
advantage of arene radical cation salts as representative
model systems has been recognized shortly after their first
synthesis. Due to the comparatively weak spin-orbit cou-
pling of the radical electron spin in a pure hydrocarbon
molecule, the electron spin relaxation times of organic con-
ductors like (fluoranthene)2PF6 (abbreviated as (FA)2PF6

below) are in the range of T1, T2 ≈ 5 − 10 µs even in the
metallic high-temperature phase. These relatively long re-
laxation times enabled a study of the electron-spin dy-
namic properties by the same methods developed earlier
in the field of nuclear magnetic resonance for phenom-
ena that are usually slower by some five orders of magni-
tude. Moreover, and even more significantly, it has been
directly demonstrated recently that the spin-diffusion in
a related compound is completely associated with the
charge-motion in the same compound [1]. We remind the
reader at this point that the electronic diffusion coeffi-
cient D and the electronic mobility µ are directly related.
The (FA) radical cation salts investigated here are espe-
cially appropriate candidates for a more detailed analysis,
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because these single crystals have sufficient long term sta-
bility, their 2:1 stoichiometry is reliably obeyed, and the
experiments reported for temperatures of 250–260 K are
carried out far enough from the Peierls-transition temper-
ature (TP = 186 K) that the “metallic” phase can clearly
be studied.

Maresch and Mehring [2–4] have originated the study
of the anisotropic motion of the charge and spin carriers in
quasi-one dimensional conductors by combining the pulsed
electron spin resonance (ESR) [5] with application of mag-
netic field gradients. For an (FA) radical cation salt, and
assuming free unrestricted – but anisotropic – diffusion,
they demonstrated that the techniques known from NMR
(nuclear magnetic resonance) for the measurement of dif-
fusion constants D [6,7] can be adopted for the derivation
of D(θ),

D(θ) = D‖cos2θ + D⊥sin2θ. (1)
The quantitative analysis of D(θ) can yield in principle
microscopic values of D‖ and D⊥ [4]. However in later in-
vestigations [8–12] the existence of various types of restric-
tions to free motion along the conducting channels in real
(FA)2PF6 samples was demonstrated or concluded. These
restrictions invalidate, at least in principle, the simple free
diffusion based analysis using equation (1).

Figure 1 illustrates our current picture of real quasi-
one dimensional conductors, such as the arene radical
cation salts. These consist of one-dimensional stacks of
aromatic hydrocarbon molecules, ‘insulated’ from each
other by octahedral complex anions like hexafluorophos-
phate [13]. The electronic scattering time along the



192 The European Physical Journal B

Fig. 1. Schematic view of a “real” quasi one-dimensional con-
ducting arene radical cation salt crystal. External dimensions
(L‖, L⊥) and an individual channel length of free diffusive mo-
tion (l) are indicated. Grain boundaries (broken lines), cracks
(solid lines) and localized defects (dots) are symbolized as the
typical interruptions of the extended one-dimensional channels.

stacking direction, τ‖, ranges between 10−15 s and 10−14 s
at room temperature, and is thus much shorter than the
perpendicular hopping time, τ⊥, which is in the range of
10−12 s to 10−10 s. The anisotropy of the macroscopic mi-
crowave electrical conductivity varies, σ‖/σ⊥ = 103−104,
and is largely influenced by defects and mosaic struc-
ture. Cases were observed with regions in which individ-
ual channels allow for the unrestricted diffusive motion
of the conduction electron spin from one end of the crys-
tal to the other [10]. But in general there are many de-
fects in the arene radical cation salts, and depending on
the general composition and the individual growth con-
ditions, between 10−5 and 10−2 Curie-like paramagnetic
defects per formula unit exist in these systems. As illus-
trated in Figure 1, such defects interrupt the 1-d chan-
nels, creating finite conduction sections of length l‖ along
the channel and presumably influence σ‖ – as well as the
‘effective’ D‖ – in a critical manner. In fact, one would
expect σ‖ to be severely ‘bottlenecked’ by the low per-
pendicular conductivity as soon as enough restrictions are
introduced into the sample to block effectively most of
the direct conducting channels. Under such situations the
charge transport and diffusion can proceed nominally only
via the much slower perpendicular hopping rates between
adjacent channels. Even for this reason alone, acquiring re-
liable quantitative values for D⊥ and intrinsic σ⊥ is highly
desirable. Furthermore, extended obstacles – e.g. cracks
and grain boundaries of mosaic like microstructures – that
cannot be easily bypassed by the slow hopping motion
perpendicular to stack in short time intervals, were also
noted [13]. Such extended obstacles are presenting an ad-
ditional cause for the experimentally observed monotonic
increase of the absolute value of the electrical conductiv-
ity σ‖ upon changing the electric field between DC (direct
current) to optical frequencies.

It is clear from the above picture that important in-
sight into the ‘story’ of the charge transport properties in
real (FA)2PF6 samples could be gained by investigating
the influence of restrictions on the electron spin diffusion
in the system. The restriction to free diffusive motion of
the conduction electron spins in arene radical cation salts
– at least an average channel length l̄‖ – can be moni-
tored by the static magnetic field gradient spin echo ESR
technique(SGSE) [8]. Thus not only the anisotropy of spin
relaxation (T2) and spin diffusion constant (D(θ)) are ac-

cessible [14,15], but also the θ-dependent influence of the
restriction l‖ and l⊥.

The analogue of equation (1) was utilized already in an
earlier preliminary study [14]. A phenomenological – or ef-
fective – average length of the conduction channels probed
by the free diffusive motion, l(θ), was derived by a numer-
ical analysis of experimental SE-decay for magnetic field
gradient in a direction θ with respect to the stacking axis.
The apparent similarity of the thus derived l‖ values for
various arene radical cation salts, ranging between 50 and
100µm [16], was rather puzzling. The more pronounced
sample dependence of the absolute values of D‖ or of the
functional dependence of l(θ), seem to reflect the defect
distribution of individual single crystals with better sen-
sitivity. This stimulated the investigations of various in-
dividual single crystals of (FA)2PF6 reported below. The
systematics of the variation of the diffusion constant D(θ)
and the effective average channel length parameter l(θ),
as function of growth and aging conditions, are derived.
Homogeneous and geometrically structured irradiations of
single crystals with 25MeV proton beam are used in order
to probe the influence of a homogeneous and structured
defect distribution on the conduction electron free diffu-
sion.

Our specific aims in the present study: i) examine and
compare the electronic spin diffusion in (FA)2PF6 samples
that have been subjected to different aging and/or other
relevant treatments; ii) test the utility of a specific phe-
nomenological model calculation for the characterization
of the highly anisotropic nature of the spin-diffusion in
the (FA)2PF6 system; iii)try to derive reliable finite D⊥
values in (FA)2PF6, for which so far only upper-limit val-
ues existed. Accordingly, the ESR experiments reported
presently consist essentially of measurements of SE-decay
of variety of samples as function of angle-dependent static
magnetic field gradient in a direction θ with respect to
the stacking axis. The observed decays were fitted by a
restricted diffusion model calculation [17,18] which was
modified by introducing the concept of a phenomenologi-
cal, or effective, angle-dependent average channel length,
l(θ), to gain statistical robustness [14,16]. Additional –
rather time consuming – fits were repeated on few selected
experiments using analytic angle-depended 2-d restricted
diffusion model calculation, in order to test the validy of
the derived diffusion parameters. Finally, the validity of
the parameters for some of the experiments was also ex-
amined by a computation-heavy 2-d random walk simula-
tion of the anisotropic diffusion.

The paper is organized as follows. Crystal specifica-
tions, proton irradiation, pulsed ESR at 425 MHz and
9.5 GHz as well as magnetic characterization of the sam-
ples are summarized in Section 2. Modelling of the SGSE
decay is explained in Section 3, including detailed ran-
dom walk simulations. Our results monitoring the restric-
tions to free diffusion of the conduction electron spins are
discussed in Section 4, considering as-grown crystals as
well as crystals modified in a controled manner by homo-
geneous or microstructured proton irradiation. The main
conclusions are summarized in Section 5.
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Table 1. Sample dimensions and characteristics.

sample L‖(mm) L⊥(mm) age treatment internal nomination

A 1.7 - > 8 y as-grown FA 37

B 1.61 0.23, 0.33 > 8 y as-grown FA 326

C 1.475 0.625, 0.300 2 y as-grown FA 1299a

D - - < 1 y as-grown FA 0401a3

E 2.35 0.375, 0.350 < 1 y homog. irrad. FA 0401a1

F 1.575 0.550, 0.575 < 1 y 100 µm microstruct. FA 0401a2

2 Experimental

The six different (FA)2PF6 single crystals studied in this
investigation, all grown at BIMF along established electro-
crystallization procedures [19], are listed and specified in
Table 1. They differ in age, as given, but since they were
stored in a freezer most of the time, older age does not
mean longer exposure to room-temperature/humid air ag-
ing. In fact, for the oldest crystals A and B the highest pu-
rity zone-refined fluoranthene starting material was used,
granting them the lowest intra stack defect content. The
concentration of localized paramagnetic defects, amount-
ing e.g. to 5.8 × 10−4 per formula unit for sample D (i.e.
sample C in [20]), was further increased by the irradiation
with a dose of up to 5.4 × 1016 protons (of energy Ep =
25 MeV) per cm2 at room temperature. This way an aver-
age defect spin concentration of 1×10−2 per formula unit
was realized for the microstructured sample F (with peri-
odic sequence of 100µm-protected 100µm-damaged seg-
ments along the stacking axis) [20].

For SGSE-instrumentation, we refer to earlier re-
ports [8,13,14,20]. We present results obtained at νL =
425 MHz or 9.5 GHz, for magnetic field gradients up to
0.2 T m−1 or 1 T m−1, respectively, in the 250 K–260 K
temperature range. The chemical stability of the samples
profits from this reduced temperature, though it is still
well above the Peierls transition temperature of TP =
186K of (FA)2PF6.

The data points in Figure 2 represent typical experi-
mental SGSE decays, acquired by either the RF or the X-
band ESR spectrometers from various samples, and with
different magnitudes and orientations of the applied mag-
netic field gradient. The particular horizontal scale in the
figure was chosen so as to normalize out the effects of dif-
ferent magnetic field gradient magnitudes for idealized free
diffusion decays (see Eq. (5)). The data ranges depicted in
the figure indicate also the useful dynamic range available
for data analysis with each of the experiments.

3 Theory and data modelling

Figure 1 illustrates the possibility of a distribution of
lengths l‖ available for the free diffusive motion of the
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Fig. 2. Static magnetic field gradient spin echo decay (versus
G2/3τ ) for angles θ given in the figures. (a) Sample A, νL =
425 MHz, (b) Sample B, νL = 9.5 GHz, G = 0.93 Tm−1; (c)
microstructured sample F, νL = 9.5 GHz, G = 0.81 Tm−1, T =
250 K. Solid lines show fit based on equations (4) and (8).

electron spins in a typical real crystal. For statistical dis-
tribution of barriers, we expect the probability

P (l) = l̄−1exp
(−l/l̄

)
(2)

for a segment of length l, with l̄ defined as the aver-
age value of l. For the contribution to the normalized
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SGSE-signal M(2τ)/M(0) we must convolute the char-
acteristic echo contribution A(l, 2τ)/A(l, 0) of an electron
spin in a channel of length l with the weight factor of spins
in such channels

P̃ (l) = l/l̄−2exp
(−l/l̄

)
(3)

i.e.
M(2τ)
M(0)

=
A(l, 2τ)
A(l, 0)

⊗ P̃ (l). (4)

We note that the the simple familiar free diffusion expres-
sion [6]

A(2τ)
A(0)

= exp
{
−2τ

T2
− 2

3
Dγ2G2τ3

}
(5)

is valid for the description of the echo decay only if the
free diffusion length lD, given by

lD = 〈r2〉1/2 = (2D · t)1/2 (6)

is short compared to all other relevant characteristic
lengths even for the longest t = 2τ values adopted in
the experiment. In addition to l and lD, it is necessary
to consider also the dephasing length lG [21,22], given by

lG = (6π/γG)1/3. (7)

Thus, the standard expression for a diffusive echo de-
cay, equation (5), can only be used as long as lD � lG, l.
This is then called the free diffusion limit.

3.1 Analytic limiting behavior descriptions

The so called motional narrowing regime is reached if l �
lD, lG. Then for parallel, perfectly reflecting, non relaxing
barriers with separation l, the diffusing spins average over
the field variation encountered and the SGSE decay is
given by [17,18]

A(l, 2τ)
A(l, 0)

= exp

{
− 2τ

T2
− 8γ2G2l4

Dπ6

∞∑
n=0

1
(2n + 1)6

×
[
2τ − 3 − 4e−Qτ + e−2Qτ

Q

]}

≡ e−2τ/T2 × F (G2, D, l, τ) (8)

with Q = D (2n+1)2π2

l2 ·
We note that equation (8) treats only a one-

dimensional diffusion process, along the applied gradi-
ent G. In actual (FA)PF6 samples, as soon as G forms
an angle θ with the direction of the conduction channels,
the possible slow hopping in perpendicular direction will
result in an additional independent diffusion process at
right angle to the stacks. It is easy to show that in such
case equation 8 should be replaced in principle by

A(l‖, l⊥, 2τ)
A(l‖, l⊥, 0)

= e−2τ/T2F (G‖
2, D‖, l‖, τ)

× F (G⊥2, D⊥, l⊥, τ) (9)

with G‖ = G × cos(θ) and G⊥ = G × sin(θ)
For large enough gradients [23], such that lG � l, lD,

an edge enhancement of the signal is known to occur. If, in
addition, the pulse separation τ is increased, an approxi-
mate exponential decay is derived with [21,22]

A(l, 2τ)
A(l, 0)

=
c

l

(
D

γG

)1/3

exp
(
−2τ

T2
+ a1(Dγ2G2)1/3τ

)
(10)

where c ≈ 5.8841 and a1 ≈ −1.0188.
All of the solid curves shown in Figure 2 are ‘best fits’

to the experimental data, based on the model calcula-
tion described by equations (4) and (8) alone. For each
θ value, just the two parameters D and l̄ are adjusted.
This procedure defines an effective – or phenomenologic
– model, physically valid only for G(θ) with θ = 0◦, 90◦.
In what follows, we call it “the effective model” for short.
Compared with the generally valid 2-d model described by
equation (9), the effective model reduces the fitting time
while improving the fit stability, without a substantial sys-
tematic error on the relevant parameters. To explore the
reliability of this procedure, random walk simulations were
reanalyzed using the effective model (Eqs. (4, 8)), as de-
scribed in the next section.

3.2 Random walk simulation

For purely one-dimensional random walk, the limiting
cases of free diffusion, motional narrowing and localiza-
tion (edge enhancement) were generated previously by
a variable range hopping simulation (VRH) [13]. As a
further step forward, Figure 3 shows that the result of
a two dimensional random walk simulation can, indeed,
be reasonably reproduced by a fit of the effective model.
The similarity of the SGSE decays in Figures 2 and 3
is self explanatory, although the effective model fit gives
l̄‖ = 65 µm instead of l̄‖ = 100 µm used for the simu-
lation. While no deviation is observed for the diffusion
parameter D, there seems to be a systematic underesti-
mation of l̄ when using the effective model. This was con-
cluded already earlier from the results of spatially resolved
pulsed gradient spin echo (PGSE) techniques that showed
a surprising fraction of spatially unrestricted channels in
(FA)2PF6 crystals, allowing free diffusion from one end of
the crystal to the other [10,11].

3.2.1 Derivation of anisotropy

For the proper modelling of the SGSE decays at arbitrary
orientation of G(θ), the simple decomposition of the self
diffusion coefficient D according to equation (1) is not
sufficient. Rather, as alluded to in the derivation of equa-
tion (9), a model calculation based on a three-dimensional
version of equations (8, 4) is required in principle. For the
essentially axial treatment practiced with the present crys-
tals, at least a convolution of equation (4) with the parallel
and perpendicular diffusion attenuations, given by equa-
tion (9), is needed. This in turn requires a tedious fit of all
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Fig. 3. Two dimensional random walk simulation of SGSE
decays for various angles of G. Simulations (symbols) and
fits with the effective model (solid lines). Simulation pa-
rameters: Average spatial restriction of 100 µm × 10 µm;
“crystal” dimensions L‖ = 1mm; L⊥ = 0.4 mm; D‖ =
0.2 cm2 s−1, D⊥ = 2×10−4 cm2 s−1, G = 1 T m−1, T2 = 5 µs.
See text for further details of the effective model.

the angular dependent echo decays at once, considering
throughout the different limiting or general descriptions
referred to in Sections 3 and 3.1. In trying to avoid this
difficulty, a two-dimensional random walk simulation of
the echo decay was performed for realistic anisotropy of
the diffusion constant D(D‖, D⊥) and realistic outer di-
mensions of the model crystal (L‖, L⊥). These numerical
decay simulations were reanalyzed based on the effective
model and assuming the Poisson length distribution, equa-
tions (4) and (8). Thus an effective average length l̄(θ) was
introduced, a quantity that obtains a real physical mean-
ing only for l‖ = l(θ = 0) and l⊥ = l(θ = 90◦). By varying
the anisotropy of the individual spatial restriction – i.e.
for constant l̄‖ = 100µm, but variation of l̄⊥ from 1 Å over
10 µm to 100 µm (the uniform case) – the reliability of the
simplified data modelling could be checked (Fig. 4). Note
that Figure 4a shows the physically unrealistic situation
where l̄⊥ restricts the diffusive motion to one molecular
chain, inspite of a nonzero D⊥-value.

The following conclusions can be drawn by inspection
of Figure 4. In all cases the correct values of D‖ and rea-
sonable values of l̄‖ are obtained. If the diffusion is not
restricted to one channel by the choice of very small l̄⊥
values, also D⊥ is correctly reproduced (Figs. 4b and c).
On the other hand, if the diffusion is restricted to one
channel via use of a very small l̄⊥ value (Fig. 4a), we note
that l̄(θ) follows a | cosθ | law. This is a clear signature of
restricted 1-d diffusion, which is indeed the physical situa-
tion in the small l̄⊥ limit. Not unexpectedly, this situation
gives rise to an overestimate of the anisotropy of the dif-
fusion constant. The realization of this extreme situation
can thus be deduced from the derived l̄(θ) variation and
could be used as a warning against attaching significance
to D⊥ values derived under such conditions.

In all other situations l̄(θ) falls below the linear | cosθ |
variation (Figs 4b, c), rendering the necessary credibility
to the value of D⊥.
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Fig. 4. Two dimensional random walk simulation of spatially
restricted diffusion, reanalyzed with the effective model. See
text for further details. Simulation parameters are the same
as in Figure 3. For constant barrier separation of l̄‖ = 100 µm
along the stacks, the perpendicular restriction distance was
varied with l̄⊥ = 1 Å in 4(a), 10µm in 4(b) and 100 µm in 4(c).
For D(θ), the solid line shows the fit of equation (1). For l̄(θ),
the calculated variation of a linear (α = 1) and quadratic
(α = 2) superposition of l̄‖ and l̄⊥, i.e. l̄(θ) = l̄‖ | cosαθ | +
l̄⊥sinαθ, α = 1, 2, is shown as solid and broken lines, respec-
tively, as a guide to the eye. The l̄(θ) fits for θ ≈ 90◦ required
a dynamic range of 7 orders of magnitude, unrealistic for the
experimental situation depicted in Figure 2.

3.3 Reliability of fit parameters

In order to estimate the shortcomings of the simplified
D(θ), l̄(θ) fits with the effective model, additional simula-
tions and data modelling were performed. Figure 5a shows
a few selected SGSE decays acquired from sample C.
Here all of the SGSE decays were fitted simultaneously
using the physically valid analytical 2-d model calcula-
tion based on the convolution of equation (9) with equa-
tion (3). The fitting procedure was simplified by noting
that with the small expected D⊥ value, the unrestricted
limit (l⊥ = ∞) can be assumed for the perpendicular dif-
fusion, replacing the more complicated form of F⊥ with
the simpler free diffusion term of equation (5). The values
D‖ = 0.268 cm2 s−1, l̄‖ = 84 µm, T2‖ = 2.9 µs obtained
by the analytical 2-d model agree within the typical er-
ror range with the results obtained from the D(θ), l̄(θ) fits
based on the effective model (see Tab. 2). The SGSE de-
cay for θ = 90◦ could be described by T2⊥ = 5.0 µs alone,
and the value D⊥ = 1 × 10−6 cm2 s−1 used is not really
discernible from D⊥ ≡ 0. This poses a question mark on
the reliability of the D⊥-values below 6 × 10−4 cm2 s−1

given in Table 2.
Figure 5b, on the other hand, shows an attempt to

fit the same experimental SGSE-decay data by assuming
the observed decay signal is a superposition of two sepa-
rate contributions, namely a fixed fraction “f” of localized
spins, and a remaining fraction “(1− f)” of restricted dif-
fusing spins. In spite of experimental indications for such
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Fig. 5. Model analyses of actual SGSE decay for sample C.
(a) Solid curves represent fits with a 2-d model calculation
based on convolution of equation (9) with equation (3). The
adjusted fit parameters: D‖ = 0.268 cm2 s−1, l̄‖ = 83.6 µm,
T2,‖ = 2.9 µs, D⊥ = 1 × 10−6cm2 s−1, T2,⊥ = 5.0 µs. (b) An
attempt to fit the SGSE decays by a superposition of localized
spins fraction and restricted diffusing spins fraction, f and (1−
f), respectively, with f = 0.339 and T2,l = 1.93 µs. For the
delocalized spins: T2,‖ = 3.08 µs, D‖ = 0.264 cm2 s−1, (l̄‖ =
200 µm), T2,⊥ = 5.37 µs, (D⊥ = 2.0× 10−5 cm2 s−1, l⊥ = ∞).
(c) The points are calculated SGSE decay values for θ = 90◦,
D⊥ = 0, T2 = 5.0 µs, influenced by the spurious transversal
gradient Gy and assumed D‖ = 0.229 cm2 s−1, for sample C in
center or off-center position. The solid curves represent analysis
of these data by the effective model, ‘predicting’ D⊥ = 1.2 ×
10−4 cm2 s−1 (5.1 × 10−4 cm2 s−1) and l⊥ = 1.1 µm (1.7 µm)
for center (off center) position, respectively. The broken line
shows the single exponential T2 decay.

localized spins [8,20], this type of decomposition fails evi-
dently in Figure 5b for the θ ≈ 0◦ orientation. Again, the
correct D‖-value is found, however.

Finally, in Figure 5c we analyse the possible influence
a small spurious magnetic field gradient component in the
direction y perpendicular to the main gradient direction z
(Gz is parallel to the resonance field Bz). Indeed, a curva-
ture of the computed echo decay shown in the semiloga-
rithmic plot is observed inspite of D⊥ being assumed to be
identically zero. For the iron wedges used in our X-band
(9.5 GHz) system this gradient component Gy is zero in
the central sample position, but grows linearly by about

0.038 (T m−1)mm−1 for off-center positions (for a main
gradient Gz = 0.49 T m−1) [24]. Thus the calculated SGSE
decay for the crystal’s needle axis oriented at θ = 90◦ is
influenced by D‖, nevertheless, and in spite of the D⊥ ≡ 0,
the calculated SGSE decay suggests a finite apparent value
of D⊥. In Figure 5c we compare the effect for an exactly
centered crystal C (L‖ see Tab. 1) and for an extremal
situation, where one end of the crystal C just reaches this
central position. Reanalysing these simulated data with
the effective model, and for D‖ = 0.229 cm2 s−1, T2 = 5 µs
appropriate for crystal C, we derive “apparent” values
D⊥ = 1.2×10−4 cm2 s−1 (5.1×10−4 cm2 s−1), l̄⊥ = 1.1 µm
(1.7 µm) and anisotropies D‖/D⊥ = 1860 (450) for cen-
tered (off-center) position.

Thus, we must conclude that the maximum D‖/D⊥-
anisotropy is instrumentally limited to about 2000 for
our X-band set-up at present. The extension of the D⊥-
minimum limit for crystals with large D‖ values requires
an even better control of the spurious Gx and Gy gradients
than is currently achievable in our X-band system.

4 Discussion of the results

4.1 As-grown crystals

Figure 6 shows the derived diffusion parameter D for three
as-grown (FA)2PF6 crystals (A, B, C). A sample depen-
dent variation of the diffusion constant D‖ by a factor of
almost 20 is observed (Tab. 2). The restriction to free dif-
fusion for this direction is sample dependent as well, but
to a much smaller extend. The averaged value l̄‖ varies
less than a factor of two, and is not simply correlated
with the D‖ values. This is in line with the reasoning
presented earlier [14] that individual intra-stack defects
reduce the effective diffusion constant, but due to the
possibility of hopping to a neighboring stack, spatial re-
striction requires extended obstacles that can not be by-
passed in the microsecond time scale. For sample A with
the strongest anisotropy of the diffusion constant, and the
smallest estimated D⊥ value, obstacles seem less easy to
circumvent. On the other hand, according to the rules de-
rived via the random walk simulations, Section 3.2.1, the
ratio D‖/D⊥ ≥ 3.4 × 104 collected in Table 2 for sample
A is suspected to overestimate the anisotropy on account
of the fact that the limiting l̄(θ)-variation (i.e. α = 1 as
in Fig. 4a) was derived in this case.

4.2 Homogeneously damaged crystal

Analysing θ = 0 X-band SGSE decays from the homo-
geneously proton irradiated sample E with the effective
model, the diffusion constant D‖ = 0.093 cm2 s−1 and the
average barrier separation l̄‖ = 17 µm are obtained. The
anisotropy of the diffusion constant derived at 450 MHz
(Fig. 7) is reduced to about two orders of magnitude only
(Tab. 2). Here, the more pronounced restriction of the con-
duction electron spin diffusion in the stacking direction
(l̄‖) is behaving similar to the reduction of the intra-stack
diffusion constant D‖.
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Table 2. Diffusion constants of (FA)2PF6 samples.

Sample T (K) D‖(cm
2 s−1) l̄‖(µm) D⊥(cm2 s−1) D‖/D⊥ τ⊥(s)

A 260 4.00 ± 0.09 88 ± 9 (≤ 1.15 × 10−4) (≥ 3.4 × 104) (≥ 1.6 × 10−10)

B 260 1.9 ± 0.1 165 ± 14 ≤ 1 × 10−3 ≥ 1900 ≥ 1.9 × 10−11

C 250 0.225 ± 0.003 98 ± 1 ≤ 6 × 10−4 ≥ 380 ≥ 3.1 × 10−11

E 250 0.081 ± 0.001 17 ± 2 (6.8 ± 0.5) × 10−4 ≈ 120 ≈ 2.7 × 10−11

F 250 0.071 ± 0.001 20 ± 2 (1.0 ± 0.5) × 10−3 ≈ 70 ≈ 1.9 × 10−11

(According to the criteria derived in 3.2.1, the value of D⊥ for sample A could also be underestimated.)
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Fig. 6. Diffusion constant D(θ) derived with help of the effec-
tive model for samples A, B, C. Experimental conditions (A):
T = 260 K, νL = 425 MHz, G = 0.064 ...0.224 Tm−1; (B): T =
260 K, νL = 9.5 GHz, G = 0.930 Tm−1; (C): T = 250 K, νL =
9.5 GHz, G = 0.923 Tm−1. D‖-, D⊥-values: see Table 2. l̄‖, l̄⊥:
(88 ± 9) µm, ≤ 2 µm, (A); (165 ± 14) µm, (10 ± 5) µm, (B);
(98 ± 1) µm, ≤ 0.6 µm, (C).
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Fig. 7. Orientation dependence of the diffusion constant, D(θ),
in the homogeneously irradiated sample E. (T = 250 K, νL =
450 MHz). For the fit parameters see Table 2.

4.3 Microstructured crystal

Single crystal F was microstructured by irradiation with
a high energy (25MeV) proton beam via a masking grid
presenting an alternating array of 100 µm wide open and
closed stripes [20]. Nevertheless, spin diffusion in mag-
netic field gradient oriented at an angle θ with respect
to the stacking axis gives rise to a SGSE decay that can
be reasonably analyzed based on the same models as for
the homogeneous crystals. Figure 8 shows the results for
D̄(θ), which are now average values for both damaged
and undamaged regions, and thus averaged not only over
the “standard” distribution. The reduction of the derived
value of D̄‖ and the ratio D̄‖/D̄⊥ comes close to the re-
sults derived for the homogeneously irradiated sample E.
Thus we conclude that the damaged areas of the (FA)2PF6

crystal F predominate in the measured SGSE decay. Evi-
dently the radiation damage reduces the parallel-to-stack
diffusion and thus also the corresponding echo attenua-
tion [20].

The effective value of the average restriction, l̄(θ),
turns out to be isotropic and amounts to about 20µm, five
times smaller than the value appropriate for l̄‖ of as-grown
crystals. This may be compared with the geometrical size
of irradiated and non-irradiated blocks of 100 µm.

5 Conclusions

Barriers in the conducting chain are of particular impor-
tance for the properties of quasi-one dimensional conduc-
tors. They reduce the direct current electrical conductivity
and give rise to a frequency dependence of the conductiv-
ity, they are responsible to a large extent for the angular
and temperature dependence of ESR line-width and re-
laxation, and eventually, if they break the one-dimensional
stacks into short enough segments, they can even suppress
the Peierls transition typically expected as a consequence
of electron phonon interaction [25]. The influence of such
barriers on the anisotropy and the spatial restriction of
conduction electron spin free diffusion is investigated here,
analysing as-grown and artificially damaged radical cation
salt crystals. As an especially appropriate model system
for this kind of analysis, the (fluoranthene)2PF6 radical
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Fig. 8. Orientation dependence of D̄(θ) and l̄(θ) for the mi-
crostructured sample F (average values for damaged as well
as undamaged regions). (T = 250 K, νL = 9.5 GHz, G =
0.81 Tm−1).

cation salt is adopted in its metallic high temperature
phase. Transverse relaxation times T2 ≥ 5 µs and con-
ductivity as well as spin diffusion anisotropies of above
103:1, combined with reasonable long term stability of the
crystals, distinguish these crystals. In addition, like for all
organic material, proton irradiation can be used to modify
the barrier properties, either uniformly or in a structured
manner.

We used the method of static gradient spin echo ESR
for the derivation of the absolute value and the anisotropy
of the diffusion constant D(θ). Random walk simulations
verified that the geometry of the restriction of free diffu-
sion along the preferred direction can be reasonably de-
termined as well, but the comparatively small diffusion
constant in the perpendicular direction, D⊥, prevents a
reliable probing of possible restrictions in this direction.
Thus the primary information source on the extension of
defects is the comparison of their effect on the absolute
value D‖ and on the spatial restriction of stack-parallel
motion, l‖, because the latter identifies obstacles that are
so large that they can not be bypassed within the time
scale of the experiment.

One of the (FA)2PF6 crystals analyzed above shows
a very large spin diffusion constant D‖ = 4.0 cm2 s−1

(sample A). This same crystal was analyzed in a spa-
tially resolving pulsed gradient spin echo experiment [10],
and showed regions where the free diffusion is restricted
only by the actual crystal dimensions. For the other as-
grown crystals (B, C) a D‖-variation by a factor of 20 was
found. Further reduction of D‖ by proton irradiation was
achieved for the two other samples (E and F). Thus spin
diffusion analysed on the microsecond time scale is sample

dependent as well as amenable to arbitrary manipulation
in (FA)2PF6 crystals.

Semi-quantitative information on the spatial restric-
tion of free diffusion can be extracted from SGSE analysis.
It is expressed by the average length l̄‖ of an exponential
channel length distribution function. This quantity shows
again a sample dependence, that is not directly correlated
with the variation of D‖, however. The curious constancy
of l̄‖ values reported earlier – all fall in the 50–150µm
range – probably mainly reflects the typical quality of
arene radical cation salts grown by electrochemical tech-
niques. It is supporting a physical interpretation, however,
that l̄‖-values could be reduced by a factor of five (to the
l̄‖ ≈ 20 µm range) via proton-irradiation created defects
in the course of this investigation.

The diffusion constant for motion of the spins perpen-
dicular to the stacking direction is small and typically re-
sides at or below the detection limit. Thus access to a
D⊥-limiting value can best be based on the analytical de-
scription of the D(θ) variation by equation (1). Our sim-
ulations indicate, however, that the anisotropy actually
can also be overestimated this way. The mechanism re-
sponsible for the perpendicular diffusion constant D⊥ is
currently still unclear. Thus the experimental comparison
of spin and charge motion perpendicular to the stacking
direction is still a duty of forthcoming experiments.

It is clearly shown by the experimental results and
the modelling of the SGSE decay of radiation damaged
in comparison to various as-grown (FA)2PF6 crystals that
the anistropy of the conduction electron spin diffusion con-
stant, D(θ), can be reduced in a controlled manner from
values considerably above 1000 to values even below 100
in this model system of quasi-one dimensional conductors.
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